1 Einführung in das SAM - Programm

In diesem Kapitel wird anhand des Beispiels GL-3.3-1 die Vorgehensweise einer Bewegungsanalyse des Viergelenkgetriebes erläutert.

1.1 Start, erste Schritte und Voreinstellungen in SAM

1.1.1 SAM-Start

"Start / Programme / CAE Institut / Berechnung / Getriebe / SAM"

1.1.2 Neues Dokument

Ein neues Dokument m	it "Datei / Neu" öffnen
(oder auf Datei Symbol	klicken).

Es erscheint folgendes Fenster:

Arbeitsfeld			x
X Min -1000.00 Y Min -1000.00	0 [mm] 0 [mm]	X Max 900.000 [mm] Y Max 900,000 [mm]	
-		ОК	

Abbildung 1: Arbeitsfelddefinition

Hier wird die Möglichkeit gegeben, die Arbeitsfeldgröße festzulegen. Durch anklicken des OK Buttons werden die Werte übernommen.

Hinweis: Achten Sie in diesem Schritt darauf, dass die Werte in diesem Feld den Getriebeabmessungen angepasst sind. Das heißt, für kleinere Getriebe sollen diese Werte dementsprechend auch kleiner gewählt werden. Ein überdimensioniertes Arbeitsfeld führt später zu Darstellungsproblemen.

1.1.3 Dokument speichern

"Datei / Speichern" oder auf Symbol Speichern 🖬 klicken.

Es ist wichtig, eine neue Datei schon ganz am Anfang zu speichern. Nur in diesem Fall wird die Analyse und Getriebesimulation möglich. Eine Systemmitteilung in Form von "RUN TIME EROR" bedeutet, dass die Datei noch nicht gespeichert wurde und führt zum Systemabsturz.

1.1.4 Anpassen der Bildschirmanzeige

Im Menü *"Wiedergabe / Options"* kann die Bildschirmanzeige geändert werden. Die gleiche Funktion wird durch drücken auf F10 ermöglicht.

Wiedergabe Optionen	X	1
Allgemein Farbe und Stil Arbeitsfeld Maus Schnappen X min 1000.000 X max 900.000 Y min 1367.937 Y max 1267.937 Y max 1267.937 Y max 1267.937	Pixel	Eine Möglichkeit den Arbeitsbereich wieder zu definieren Es wird nur die
Animation Geschwindigkeitshodegra Erneuern Hodograph-Größe 100 Kupplung mit XY-Graph Hodograph-Vector in Verzögerung 100 [ms] Inkrement 1 Schritt(e) Gekreuzt Kerneuzt Kerneuzt	ph % ivertieren	momentane Lage dargestellt
Kommentarzeile beim Drucken	OK Abbrechen	

Abbildung 2: Optionen

Unter *"Farbe und Stil"* werden die Einstellungen für die graphische Darstellung festgelegt. Jedem Zeichnungselement kann man eine Farbe und einen Darstellungsstil zuordnen.

Zu besseren Übersicht gibt es die Möglichkeit das Bildschirmraster zu aktivieren.

Wiedergabe Optionen Allgemein Farbe und Stil			×	
Getriebe Zeichnung Bahnkurve Geschwindigkeitshodograph Raster Antriebsbewegung Kraft Masse Schwerkraft Unterstützung Element Label Gelenkpunkt Label Rastpolbahn Gangpolbahn Krümmungsmittelpunktsbahn	ৰ য ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব	Farbe Stil		Raster ausgeschaltet

Abbildung 3: Farbe und Stil

Nach der Aktivierung vom Raster sieht der Bildschirm folgendermaßen aus:

Abbildung 4: Raster

1.1.5 Festlegung von Einstellungen

Unter "Datei / Einstellungen" werden verschiedene Einstellungen in SAM festgelegt.

Im Dialogfenster unter "Zahlendarstellung / Einheiten" kann der Benutzer die gewünschte Zahlendarstellungsart einstellen. Es kann zwischen:

- Festkommadarstellung und
- Fließkommadarstellung

gewählt werden.

Unter Dezimalstellen wird die gewünschte Anzahl an Dezimalen manuell angegeben.

Beim exportieren von Ergebnissen kann später im Dialogfenster "Ergebnisse / Export" eine separate Einstellung vorgenommen werden, die nur die exportierten Daten beeinflusst.

Die eingestellte Dezimalenanzahl betrifft nur die Darstellung von Zahlen. Programmintern werden alle Zahlen mit der Genauigkeit des Fließkommaprozessors gespeichert. Es werden also immer alle eingegebenen Dezimalen bewahrt, unabhängig von der beschränkten Dezimaldarstellung.

Einstellungen	×
Zahlendarstellung / Einheiten Fenster Analyse Drucker / Zwischenablage Maus 💶	Ungünstig formuliert Festkomma wäre besser
Format	
С Fließkomma (z.B. 1.234 Е+02)	
Dezimalstellen 3	
Komma "," als Dezimaltrennung beim Exportieren der Resultate	
Einheiten	1
OK Abbrecher	n

Abbildung 5: Zahlendarstellung

Der Benutzer kann zwischen verschiedenen Einheiten-Systemen wählen.

(SI, Englisch...)

Kontrollieren Sie immer, ob Maßeinheiten mit Einheiten unseres Beispiels übereinstimmen (z.B. mm für Position, mm/s für Geschwindigkeit usw.).

Maßeinheiten						<u>></u>
Einheiten-System	Kunden-spezifisch		•			
Position	Millimeter	[mm]	Rotation	Grad		[deg]
Geschwindigkeit	Millimeter/Sekunde	[mm/s]	Winkelgeschwindigkeit	Radial/Sekund	e 💌	[rad/s]
Beschleunigung	Millimeter/Sekunde^2	[mm/s2]	Winkelbeschleunigung	Radial/Sekund	e^2 💌	[rad/s2]
Kraft	Newton	[N]	Drehmoment	Newton*millimet	er 💌	[Nmm]
Masse	kilogram 💌	[kg]	Massenträgheitsmoment	kilogram millimet	ter^2 💌	[kgmm2]
Federkonstante	Newton/millimeter	[N/mm]	Rotationsfeder	Newton Millimet	er/Radial 💌	[Nmm/rad]
Dämpfung	Newton/(Millimeter/Sekur	[Ns/mm]	Rotationsdämpfer	Newton Millimet	ersec./Ra 💌	[Nmms/rad]
	Leistung	Watt	▼ [W]			
					OK	Abbrechen

Abbildung 6: Einheiten-Einstellungen

Im Fenster Analyse deaktivieren Sie bei erstem Analysestart *"Autoanalyse".* Falls die Autoanalyse aktiviert ist, werden später die einzelnen Komponenten im Analysefenster ausgeblendet.

stellungen					
Zahlendarstellung / Einheiten Fenster	Analyse	Drucker / Zw	ischenabl	age Mau:	• •
- 4.4.4.4.4.4.4.4					
Auto-Analyse	h ieder Ände	rundi			
Analuse starten während Getrieb	e modifiziert	wird			
	o moanaior.				
Greb Analuse					
Grob-Analyse		Inkrement	5	Schrit(te)	
		micromonic	10	o or init(to)	
			OK	Abbr	echen

Abbildung 7: Einstellungen / Analyse

Weitere wichtige Einstellungen in SAM:

Einstellungen
Fenster Analyse Drucker / Zwischenablage Maus Wiedergabe Andere
Animation
Erneuern V Zoom Extrem
✓ Kupplung mit XY-Graph
Verzögerung 100 [ms]
Inkrement 1 Schritt(e)
Invertiert
Raster
© Punkte
Größe 10.0000 [mm]
C Zeien
0K Abbrechen

Abbildung 8: Einstellungen / Wiedergabe

In diesem Fenster wird die Größe des Rasters festgelegt.

nstellungen					<u>×</u>
Fenster Analyse Drucker / 2	Zwischenablage	Maus \	Wiedergabe	Andere	T
Editor (vollständiger Pfad) c:\winnt\notepad.exe					
Initielle Arbeitsplatzabmesse Xmin [-1000.000 Ymin [-1000.000]	ung (mm) (mm)	X max Y max	900.000	[mm] [mm]	
Graph Einstellungen I▼ Raster I	Symbole	🔽 Au	uto-Skalierung	1 🔽 Kursor	
			OK	АЬ	brechen

Abbildung 9: Einstellungen / Arbeitsfeldgröße

Die Feldgröße, die man hier einstellt, erscheint am Anfang beim Öffnen eines neuen Dokuments.

1.2 Konstruktion des Viergelenkgetriebes (GL-3.3-1)

Ermittlung Winkel α_2 , Winkelgeschwindigkeit $\dot{\alpha}_2$ und Winkelbeschleunigung $\ddot{\alpha}_2$ für $\alpha_1 = 45^\circ$ und $\dot{\alpha}_1 = 10 \text{ s}^{-1}$.

Gliedlängen [mm]: r₁=40, r₂=60, s=70, I=80.

Abbildung 10: Viergelenkgetriebe (GL3.3-1)

1.2.1 Erstellung der Glieder

SAM ist mit einer Bibliothek ausgerüstet, die folgende Standardelemente beinhaltet:

- Glied
- Schubgelenk
- Riementrieb
- Zahnradpaar
- Feder
- Dämpfer
- Reibung

Das Glied ist ein grundlegendes Element in SAM. Es wird benutzt, um jede Art von Verbindungen zu modellieren. Das Glied wird durch die Position seiner Endpunkte definiert.

Der einfachste Weg ein Glied zu erstellen, ist der Klick auf das entsprechende Symbol.

In unserem Fall, das Symbol

Zu gleichem Ergebnis kommt man über das Menü "Getriebe / Glied". Durch Klicken mit der Maus auf das Arbeitsfeld, werden die Endpunkte festgelegt. Während die Maus bewegt wird, werden die jeweiligen Koordinaten am unteren Rand des Bildschirms angezeigt.

Der Bildschirm sieht nun folgendermaßen aus:

Za Casa Garded Zelling Anteodemping assumption weighting analyse metrical crister rates □ <t< th=""><th></th></t<>	
D 1 N	
X ×	
GledErstellen Keine Antriebsbewegung definiert6.300 : -683.500 (mm)	
A Start 3 A Start 3 A Systemsteuerung	💓 DE 14:50

Abbildung 11: Gliederstellung

Das zweite Glied wird nach derselben Vorgehensweise wie das erste erstellt, mit dem Unterschied, dass eines der Gelenke des neuen Gliedes mit einem Gelenk des ersten Gliedes zusammenfallen muss, um eine Verbindung herzustellen. Wenn die Maus in die Nähe eines bereits existierenden Gelenks gebracht wird, zeigt die Form des Cursors, dass das neue Gelenk mit Hilfe des Fangmodus mit diesem bereits existierenden Gelenk verbunden wird.

Nach dem gleichem Schema werden alle anderen Glieder des Getriebes auf die SAM-Oberfläche gebracht.

Wenn ein Glied falsch erstellt wurde, besteht die Möglichkeit dieses wieder zu löschen. Um ein Glied zu löschen wird die Funktion im Menü "Getriebe / Element löschen" aufgerufen.

Die Gliedlängen können im Eigenschaftsfenster abgelesen werden, welches man durch Doppelklick auf das Glied öffnet. Hier können auch die Element- und Gelenknummern nachgelesen, sowie die Trägheitseigenschaften des Gliedes definiert werden. Trägheitseigenschaften sind:

- Masse
- Schwerpunkt und
- Trägheitsmoment

1.2.2 Gestellkonstruktion

Um ein Gestell zu konstruieren wird auf das Symbol Beklickt, oder das Menü "Getriebe / Fixieren Gelenkpunkt" aufgerufen.

Die Lagerform hängt von der Cursorstellung ab. Ein Gelenkpunkt wird angeklickt und die Maus wird um den Gelenkpunkt bewegt, ohne die Maustaste loszulassen, bis die gewünschte Lagerungsart angezeigt wird.

Mit der Eingabe der gewünschten Lagerung ist das Getriebe sozusagen vorkonstruiert, nur die richtigen Gliedlängen fehlen noch.

Abbildung 12: Viergelenkgetriebe im SAM

1.2.3 Gelenkkoordinaten

Jedem Getriebegelenk werden entsprechende Koordinaten zugeordnet. Es bestehen einige Möglichkeiten um Gelenkpunktkoordinaten einzugeben:

- durch anklicken des Symbols
- durch anklicken des Symbols
- drücken auf Leertaste
- im Menü "Getriebe" wird "Gelenkpunktkoordinaten" ausgewählt

Drücken auf Leertaste öffnet ein Fenster, in welchem ein Gelenkpunkt eingegeben wird.

Tastatureingabe	×
Gelenkpunkt Nummer	2
Mittels <tab> können Gelenkpunkt/Element :</tab>	sie von einem zum nächsten springen.
	OK Abbrechen

Abbildung 13: Gelenkpunkteingabe über Leertaste

Alle oben genannten Möglichkeiten bietet folgendes Fenster:

Gelenkpunkt-Eigenschaften (Gelenkpunkt 2)	×
Koordinaten Graphauswahl Gruppe verschieben	
Carthesisch (absolut) Carthesisch (relativ)	
Polar (absolut) Polar (relativ) Schnittpunkt	41
Badius : 40,000	
Induces . Jacobo	
Winkel 45,000 [deg]	
Beferenzpunkt 1	
OK Abbreck	hen

Abbildung 14: Koordinaten / Gelenk 2

Das Fenster öffnet sich nach dem Klick auf den gewünschten Gelenkpunkt.

Zuerst wird der Gelenkpunkt 2 definiert. Hierfür sind am besten relative Polarkoordinaten

geeignet. Als Referenzpunkt wird Gestell 1 genommen. Der Gelenkpunkt 2 wird mit einem Abstand von 40 mm und mit einem Winkel von 45° in Bezug auf Punkt 1 definiert. Hier ist besonders zu beachten, dass die Einheiten stimmen (für Länge [mm] und für Winkel [deg]). Im nächsten Schritt wird der Gelenkpunkt 4 bezüglich Gelenkpunkt 1 definiert.

Gelenkpunkt-Eigenschaften	ı (Gelenkpunkt 4)		×
Koordinaten Graphauswahl	Gruppe verschieber	1	
Carthesisch (absolu	t) Ca	rthesisch (relativ)	!
Polar (absolut)	Polar (relativ)	Schnittpunkt	
Padius / 70	[]		
naulus . j70	[mm]		
Winkel:0	[deg]		
Referenzpunkt [1]			
			1
		OK Abbrech	en

Abbildung 15: Koordinaten / Gelenk 4

SAM bietet eine sehr praktische Möglichkeit einen Gelenkpunkt als Schnittpunkt zweier Längen zu erzeugen. Auf diese Weise wird der Gelenkpunkt 3 erzeugt. Der Gelenkpunkt 3 ist der Schnittpunkt von den Längen I und r₂.

Als Schnittpunkt sind zwei verschiedene Lösungen möglich. In unserem Fall ist die Lösung "Links von N1-N2" richtig.

Gelenkpunkt-Eigenschaften (Gelenkpu	ınkt 3) 🛛 🔀
Koordinaten Graphauswahl Gruppe ver	schieben
a second a second	
Carthesisch (absolut)	Carthesisch (relativ)
Polar (absolut) Polar (rel	ativ) Schnittpunkt
Länge 1 : 80.000	[mm]
Länge 2 : 60.000	[mm]
Referenzpunkte N1 2 N2: 4	
Links von N1-N2	
	OK Abbrechen

Abbildung 16: Koordinaten / Gelenk 3

Damit ist das Getriebe geometrisch vollständig definiert.

1.2.4 Antriebsdefinition

SAM ermöglicht die Definition mehrerer gleichzeitiger Eingangsbewegungen. Dies können Verschiebungen, Verlängerungen oder (relative) Winkeländerungen sein. Alle Bewegungen können unabhängig voneinander definiert werden. Häufig angewendete Bewegungsgesetze können kombiniert werden um somit jeden gewünschten Bewegungsablauf darstellen zu können.

Es sind folgende Arten der Antriebsbewegung möglich:

- Linear: Bewegung mit konstanter Geschwindigkeit
- Sinus: Sinusförmige Bewegung
- Pol345: Polynomische Antriebsbewegung bis 5. Grad
- Trapezium: Bewegungsprofil 2.Ordnung
- Spline: Spline 3. Ordnung

Um einen Antrieb zu definieren wird das Symbol 🕮 gewählt . Anschließend wird auf den Gelenkpunkt, an dem der Antrieb definiert werden soll, geklickt (Gelenkpunkt 1).

Es erscheint folgendes Fenster:

Lineair Sinus Pol.345 Bewegungsdatei Trapezium Spline 400.000 Parameter Wert Abmessung Bewegung 360 [deg] Zeit 0.628 [s]	Antriebsbewegung	×
Intervalle 100 [-] Intervalle 100 [-] Winkelgeschwindigkeit 10.000 S.000 0.000 0.000 1.000 Vinkelbeschleunigung 1.000 1 Linear 1.000 1.000 Löschen Alles löschen Zwischenablage Drucken	Antriebsbewegung Lineair Sinus Pol.345 Bewegungsdatei Trapezium Spline Parameter Wett Abmessung Bewegung 360 [deg] Zeit 0.628 [s] Intervalle 100 [·] Hinzufügen Einfügen Andern Liste aktueller Bestandteile: Nr. Time Intervals 1 Linear 1.000 100 Löschen Alles föschen I	Vinkel 400.000 200.000 0.000 0.000 Vinkelgeschwindigkeit 10.000 Vinkelbeschleunigung 1.000 1.000 Ducken

Abbildung 17: Antriebsbewegung

$$\frac{Bewegung}{Zeit} = \dot{\alpha}_1$$

Es ist erforderlich, folgende Daten zu definieren:

- Relativbewegung
- Dauer der Bewegung
- Zahl der Intervalle, in welchen die Berechnung durchgeführt werden soll

Die Antriebsbewegung des Viergelenkgetriebes ist über die konstante Winkelgeschwindigkeit $\dot{\alpha_1} = 10 \, \text{s}^{-1}$ vorgegeben.

Die Winkelgeschwindigkeit $\dot{\alpha}_1$ wird als $\frac{Bewegung}{Zeit}$ [rad/s] eingegeben.

Optimal ist die Angabe einer Umdrehung (360° = 2π) mit zugehöriger Zeit.

Die zugehörige Zeit für eine Umdrehung beträgt:

$$t = \frac{2\pi}{\overset{\bullet}{\alpha_1}}$$

$$t = \frac{2\pi}{10} = 0,628$$
 [s]

Damit werden in das Dialogfenster folgende Daten eingetragen:

- Bewegung (eine volle Umdrehung) 360°
- ausgerechnete Zeit t = 0,628 [s]
- Anzahl der Intervalle (max.720) 100

Die Daten werden erst nach dem Klick auf "Hinzufügen" übernommen.

1.3 Analyse und Animation des Getriebes

1.3.1 Analyse

Die Analyse des Getriebes wird durch anklicken auf das Symbol Analyse gestartet(oder über Menü "Analyse" aufgerufen).

Dabei werden alle Punkte außer "Alle Kräfte" gewählt (dieses wird im Anschluss erklärt)

Abbildung18: Analysestart

Bevor die Analyse gestartet wird, kann der Benutzer definieren, welche Elementeigenschaften berechnet und für die weitere Verarbeitung gespeichert werden sollen.

Im Fall eines Gliedes können die folgenden Punkte ausgewählt werden:

- Länge, Verlängerung (und deren Ableitungen) Hinweis: Verlängerung sollte Weg heißen.
- Absoluter und relativer Winkel, Winkelgeschwindigkeit, Winkelbeschleunigung
- Normalkraft und Leistung
- Drehmoment und resultierende Kräfte an Gelenken

Diese Auswahlmöglichkeiten findet man nach dem Klick auf "Gelenkpunktdaten" oder "Elementdaten" und anschließendem Klick auf das gewünschte Element (Glied oder Gelenkpunkt).

Für das Glied 3 öffnet sich folgendes Fenster:

ment Eigenschaften (Glied 3)				
Eigenschaften Graph Auswahl Wiede	rgabe			
			X.avio	
Plot				
🗖 Länge	L			
🔲 Verlängerung	Е			
🗖 Geschwindigkeit	EV			
🔲 Beschleunigung	EA			
Normalkraft	FN1			
🔲 Leistung	Р			
🔽 Winkel	A			
🔲 Relativ-Winkel	AB			
🔽 Winkelgeschwindigkeit	AV			
Winkelbeschleunigung	AA			
Gelenkpunkt Nr : 3				-
Drehmoment	T1			
🗖 Leistung	P1			
Gelenkpunkt Nr :4	т2			
	P2			
		01/		
		UK	Abbrech	ien

Abbildung 19: Element Eigenschaften, die zu berechnen sind

Nach dem Klick auf "OK" wird die Berechnung durchgeführt.

Die Funktionstaste F9 ermöglicht den direkten Start einer Berechnung ohne den Dialog aufzurufen. Dieses ist vor allem praktisch, wenn die gleichen Berechnungen wiederholt durchgeführt werden.

1.3.2 Animation

Nach dem Klicken auf das Symbol für Animation wird der Bewegungsablauf des Getriebes auf dem Bildschirm gestartet (oder im Menü *"Wiedergabe/Animation"*). Im Menü *"Wiedergabe"* besteht außerdem die Möglichkeit folgendes darzustellen:

- Bahnkurve: Bahnkurve von Gelenken
- Hodograph: Geschwindigkeiten von Gelenken
- Rastpolbahn und Gangpolbahn für ein Getriebeglied
- Krümmungsmittelpunktsbahn für ein Gelenk

Geschwindigkeits-Hodograph stellt einen geometrischen Ort aller Spitzen des Geschwindigkeitsvektors (um 90 Grad gedreht) eines bewegenden Punktes dar.

Abbildung 20: Bahnkurve und Hodograph des Gelenkes 3

1.4 Ausgabe der Ergebnisse

Nachdem das Getriebe einmal konstruiert ist und die Bewegungsdaten definiert sind, können folgende Werte errechnet werden (alle relativ oder absolut):

- Position,
- Verschiebung,
- Geschwindigkeit und Beschleunigung von Gelenkpunkten,
- Winkel,
- Winkeländerungen,
- Winkelgeschwindigkeit und Winkelbeschleunigung

Die Resultate der Analyse können entweder tabellarisch oder graphisch dargestellt werden.

Um die Ergebnisse graphisch darzustellen wird auf das Symbol 🔛 geklickt und anschließend auf den gewünschten Gelenkpunkt oder das Getriebeglied.

Für Getriebeglied 3 erscheint folgendes Fenster:

lement Eigenso	haften (Glied 3)				×
Eigenschaften	Graph Auswahl 🛛 🛶	edergabe			
	Länge Verlängerung Geschwindigkeit Beschleunigung Normalkraft Leistung Winkel Relativ-Winkel Winkelgeschwindigke Winkelbeschleunigun Gelenkpunkt Nr :3 Drehmoment Leistung	L EV EA FN1 P A AR M A A T1 P1	>	<-axis	
	Gelenkpunkt Nr :4 Drehmoment Leistung	T2 P2			
			OK	Abbreche	en

Abbildung 21: Datenauswahl für Darstellung von der Ergebnisse

Nach der Selektion der gewünschten Daten in diesem Fenster werden entsprechende Daten im gleichen Graph dargestellt.

Die Auswahl im Menü "Ergebnisse/Graph" zeigt die Ergebnisse für den Winkel, die Winkelgeschwindigkeit und die Winkelbeschleunigung des Getriebegliedes 3.

Abbildung 22: Graph. Ergebnisse für Glied 3

Das Getriebe wurde genau in der gewünschten Lage gezeichnet, was einem Zeitpunkt t=0 entspricht. Es wird mit der Maus so weit nach links bewegt bis die Zeitachse t=0.000 anzeigt . Die Ergebnisse für das Glied 3 lassen sich jetzt aus dem Graph ablesen:

- Winkel $\alpha_2 = 180^{\circ} 126,6 = 53,4^{\circ}$
- Winkelgeschwindigkeit $\dot{\alpha}_2 = 5,393$ [1/s]
- Winkelbeschleunigung $\alpha_2 = 58,108 [1/s^2]$

Manchmal ist es schwierig die verschiedenen Größen deutlich darzustellen, da der Min/Max Bereich stark unterschiedlich ist. Daher gibt es in SAM die Möglichkeit zwei unterschiedliche Y-Achsen (mit unterschiedlicher Skalierung) darzustellen. Eine Skalierung wird links dargestellt, während die andere an der rechten Seite des Graphen wiedergegeben wird. Zunächst wird "Kurve links/rechts" aus Ergebnis-Menü ausgewählt (oder das

Symbol key geklickt) und danach auf die gewünschte Variable (z.B. AA(3)) im Graph geklickt.

Die Variable wird auf die rechte Seite des Graphen verschoben und die Y-Achse ist neu skaliert. Die Kurve ist damit besser sichtbar.

Abbildung 23: neue Skalierung für AA(3) / Winkelbeschleunigung

An einem Graph lassen sich einige Einstellungen vornehmen. Nach einem Doppelklick auf den Graph öffnet sich folgendes Fenster:

Graph Optione	n	×
Titel		
Graph Titel	Graph	
Beschriftung		
X-axis		
Y links		
Y rechts		
Bereich	Min	Max
X-axis	0.0000	1.0000
Y links	-400.0000	600.0000
Y rechts	0.0000	1.0000
Verschiedene	•	
Raster	° 🗖 Symbole	🔽 Auto-Skalierung 🔽 Kursor
		OK

Abbildung 24: Graph-Einstellungen

Hier wird sehr oft der Darstellungsbereich für die X- und Y-Achse erweitert oder verkleinert, um einen vollständigen Graph darzustellen.

Die X-Achse wird standardmäßig als Zeit-Achse definiert. Es ist auch möglich andere Werte als X-Achse zu definieren. Im Menü *"Ergebnisse/Definition X-Achse/X-Achse: Auswahl"* können neue Werte für die X-Achse definiert werden.

Getriebelehre

Abbildung 25: Winkel als X-Achse

Die Ergebnisse können auch in Form einer Textdatei ausgegeben werden. Im Menü *"Ergebnisse / Exportieren"* findet man die entsprechende Funktion, um die Ergebnisse in Textform darzustellen.

Nach dem Klick auf OK, wird der Dateiname und Speicherort eingegeben.

Exportieren Resultat	×
Layout	Dezimaldarstellung
Standardzahl	Gestellpunkt
🔽 Kopfzeile	C Fließkomma
C Schritt Nummer	Dezimalstellen 3
🔽 Zeit	
	Liste
C Antriebsbewegung-F	🔽 Liste zeigen
	OK Abbrechen

Abbildung 26: Export von Ergebnissen

Die Ergebnis-Datei sieht folgendermaßen aus:

Result	at Liste	SAM 4.2c . G	etriebe:	b]3_3_1	
Nr: [-] 0 1 2 3 4 5 6 7	Zeit [s] 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0600	A(3) AV(3) [deg] [rad/s] -126.6002 -123.3605 -119.8771 -116.2171 -112.4305 -108.5556 -104.6227 -100.6568	AA(3) [rad/s2 5.3928 5.8897 6.2504 6.5109 6.6957 6.8214 6.8995 6.9378 6.9378] 58.1079 42.1511 30.5714 21.9353 15.2985 10.0318 5.7088 2.0349 1.1077	I
9 10	0.0900	-92.7081 -88.7608	6.9148 6.8595	-4.1381 -6.8944	

Abbildung 27: Textdatei mit Ergebnissen

Gewünschtes Ergebnis für t=0

1.5 Aufgabe (Bewegungsanalyse)

Bitte lösen Sie die folgende Aufgabe:

Ermitteln Sie mit Hilfe von SAM:

- Lage
- Geschwindigkeit
- Beschleunigung

des Punktes B.

Gegeben:

- Gliedlängen [mm]: r = 50 , l = 220
- e=0
- n = 3000 1/min
- α = 77,2 °

Abbildung 28: Geradschubkurbelgetriebe, Blatt GL-3.5-1

2 Kraftanalyse

SAM ist in der Lage eine Kraftanalyse von Getrieben auszuführen, wobei folgende Daten berechnet werden können:

- Antriebsmoment (Antriebskraft),
- Reaktionskräfte in Gestellpunkten,
- Kräfte in Zwischengelenken,
- Benötigte Leistung

2.1 Kraftanalyse des Viergelenkgetriebes (GL-3.3-1)

Die Kraftanalyse wird am Beispiel GL-3.3-1 erklärt.

Abbildung 29: Beispiel für Kraftanalyse

Gegeben:

Abmessungen [mm]: $r_1 = 40$, $r_2 = 60$, s = 70, I = 80. Gliedmassen [kg]: $m_1 = 1,57 \cdot 10^{-2}$; $m_2 = 3,14 \cdot 10^{-2}$; $m_3 = 2,35 \cdot 10^{-2}$ Drehmassen [kg mm²]: $J_1 = 2,093$; $J_2 = 16,746$; $J_3 = 7,065$ (bzgl. Schwerpunkte)

Bewegung: Winkelgeschwindigkeit $\dot{\alpha}_1 = 10 \, \text{s}^{-1} = \text{konst.}$

Gesucht:

Für eine momentane Stellung α_1 =45° die eingeprägte Kraft F_{12} ^{*} (Wirkungslinie eingezeichnet), die den Bewegungsablauf bewirkt.

<u>Lösung:</u>

2.1.1 Zuordnung der Massen und Drehmassen an Glieder

Zuerst werden die richtigen Einheiten für Gliedmassen m [kg] und Drehmassen J [kg mm²], unter "Datei/Einheiten", festgelegt.

Um jedem Glied eine Masse, Massenträgheitsmoment und Position der Masse zuordnen zu können, werden die Glieder nacheinander doppelt angeklickt. Es erscheint folgendes Fenster:

E	lement Eigenschaften (G	ilied 1)		×
	Eigenschaften Graph Au:	swahl Wiedergal	be	
	Element Nr. Gelenkpunkt 1 Gelenkpunkt 2 Länge Winkel	1 1 2 40.0000 45.0000	[mm] [deg]	
	Masse Massenträgheitsmom Relativer Abstand	0.0157 2.0930 0.5000	[kg] [kgmm2] [-]	
			OK A	bbrechen

Abbildung 30: Massen und Massenträgheitsmoment zuordnen

Hier werden die Werte für die Masse, Massenträgheitsmoment und Lage des Schwerpunktes eingetragen.

Der Schwerpunkt wird definiert als Quotient des Abstandes vom ersten Gelenkpunkt und der Länge des Gliedes, und kann zwischen 0 und 1 liegen. Er muss auf dem Glied liegen.

Diese Werte werden an allen Gliedern definiert.

Danach sieht das Viergelenkgetriebe in SAM folgendermaßen aus:

Abbildung 31: Getriebe mit Massen und Trägheiten

2.1.2 Analyse

Im Auswahlfenster für Analyse wird zusätzlich der letzte Punkt "Alle Kräfte" selektiert.

Abbildung 32: Kräfteanalyse starten

Durch Betätigen des Buttons *"Gelenkpunkdaten"* und Selektieren einzelner Gelenkpunkte, werden die Werte für die Berechnung festgelegt. Ohne Selektion in diesem Fenster werden die Kräfte an Gelenkpunkten nicht berechnet.

Gelenkpunkt	-Eigenschaften	(Gelenkpunkt 1)		×
Koordinaten	Graphauswahl	Gruppe verschieben		
Pla	X-Rich ot	tung	X-axis	
ब ब न न	Position Verschiebung Geschwindigkei Beschleunigung Kraft	Xx Ux t Vx I Ax Fx		
। य य	Y-Rich Position Verschiebung Geschwindigkei Beschleunigung Kraft	tung Xy Uy t Vy I Ay Fy		
র ব	Absolu Geschwindigkei Beschleunigung Kraft	t VAbs AAbs FAbs		
		OK	Abbrecher	n

Abbildung 33: Daten an Gelenkpunkten, die berechnet werden sollen

2.1.3 Darstellung der Ergebnisse

Ergebnisse von SAM:

Lagerreaktion / Gelenkpunkt 1:

 $Fx_1 = -174,8 \text{ mN}$ $Fy_1 = -74,7 \text{ mN}$ $Fabs_1 = 190,1 \text{ mN}$

Lagerreaktion / Gelenkpunkt 4:

 $Fx_4 = 2,8 \text{ mN}$ $Fy_4 = 26,7 \text{ mN}$ $Fabs_4 = 26,8 \text{ mN}$

Drehmoment:

*T*₁ = 2,8324 Nmm

Die eingeprägte Kraft F_{12}^{*} lässt sich berechnen:

 $F_{12}^{*} = \frac{T_1}{r_1} = \frac{2,8324}{40} = 0,07081$ N = 70,81 mN

Damit ist die gestellte Aufgabe gelöst.

2.2 Aufgabe (Kraftanalyse)

Für die Aufgabe GL-3.5-1 (siehe Blatt 26) ermitteln Sie mit Hilfe von SAM folgendes:

- Lagerreaktionen und

- Antriebsmoment

für eine momentane Stellung α = 77,2 °.

Gegeben:

- Gliedlängen [mm]: r = 50 , l = 220
- Gliedmasse [kg]: $m_r = 0.02$, $m_l = 0.1$
- Drehmassen [kg mm²]: $J_r = 4,17$, $J_l = 403$
- Bewegung[1/min]: n = 3000

3 Projektdokumentation

Durch Anklicken im Menü "Datei / Projekt Dokumentation" wird ein Textdatei mit verschiedenen Daten erstellt.

In Projektdokumentation wird folgendes dargestellt:

- Gelenkpunkt- und Elementdaten
- Fixierungen (Lager)
- Antriebsbewegung
- Kraftbelastung

🛃 ergebnis.txt - Editor							- <u>-</u> ×
Datei Bearbeiten Format 7	,						
GELENKPUNTE Gelenkpunkt Num X-Koordinate Y-Koordinate	mer : :	1 -10.000 [i 460.000 [i	mm] mm]				-
Gelenkpunkt Num X-Koordinate Y-Koordinate	mer : :	2 18.284 [488.284 [mm] mm]				
Gelenkpunkt Num X-Koordinate Y-Koordinate	mer : :	3 95.773 [i 508.169 [i	mm] mm]				
Gelenkpunkt Num X-Koordinate Y-Koordinate	mer : :	4 60.000 [i 460.000 [i	mm] mm]				
ELEMENTE Element Nummer Typ Gelenkpunkt(e) Koordinaten Länge winkel Massenträgheits Relatief Pos.	mom.	1 Glied 1, 2 (-10.0000, 40.000 [m 0.785 [r 0.015 [k 2.093 [k 20.000 [m]	460.0000); (18.2843, m] ad] gmn2] gmn2] m] (Ref. Gelenkpunkt 1)	, 488.2843) [mm])			
Element Nummer Typ Gelenkpunkt(e) Koordinaten Länge Winkel Masse Massenträgheits Relatief Pos.	mom.	2 Glied 2,3 (18.2843, 80.000 [m 0.251 [r 0.031 [k 16.746 [k 40.000 [m	488.2843); (95.7736, m] ad] g] gmm2] m] (Ref. Gelenkpunkt 2)	, 508.1690) [mm])			
Element Nummer Typ Gelenkpunkt(e) Koordinaten Länge winkel Masse Massenträgheits Relatief Pos.	mom.	3 Glied 3,4 (95.7736, 60.000 [m 4.073 [r 0.023 [k 7.060 [k 30.000 [m	508.1690); (60.0000, m] ad] g] gmm2] m] (Ref. Gelenkpunkt 3)	, 460.0000) [mm])			
FI×IERUNGEN Fixierung Numme Typ Gelenkpunkt(e) Richtung	r : :	1 Verschiebu 1 X, Y	ng				
Fixierung Numme Typ Gelenkpunkt(e) Richtung	r : :	2 Verschiebu 4 X, Y	ng				
ANTRIEBSBEWEGUNG Antrieb Nummer Typ Element (Punkt) Profil	:	1 Rotation 1 (1) LINEAR	10.0000 [rad] 0.0000	[s] 100 [steps]			
KRAFTBELASTUNG		: кеine					-
				_	1		•
🏽 🕄 🎒 🎆 Start	Sam5)	🔍 bilder	lergebnis.txt - Editor	🖉 ergebnis.txt - Editor	C 😽 DE	13:40

Abbildung 35: Projektdokumentation

4 Probleme bei der Analyse

Bei der Analyse können Probleme auftreten, die im allgemeinen auf ein Problem in der Getriebedefinition zurückzuführen sind Häufigste Fehlermeldungen:

"Getriebe unterbestimmt"

- Es fehlt eine Gestellpunktdefinition
- Es fehlt eine Winkelfixierung
- Es fehlt ein Antrieb

"Getriebe überbestimmt"

- Zu viele Gestellpunkte
- Zu viele Winkelfixierungen
- Zu viele Antriebe

"Konvergenzprobleme"

- Das Getriebe kann die gewünschte Stellung nicht erreichen

"Kein Antrieb definiert"

- Es fehlt die Definition des Antriebes

"Zu viele Ergebnisse selektiert"

- Es dürfen maximal 100 Ergebnisse selektiert werden

Das Programm beinhaltet auch einige Programmierfehler:

- Die Kräfte in Zwischengelenken werden falsch berechnet
- Das Programm zeigt ein Ergebnis für Moment T_2 obwohl es gleich Null ist
- Während der Zuordnung von Massen, Drehmassen und Positionen der Massen ändern sich die Gelenkpositionen

Um diesen Fehler zu beheben, sollte die letzte Funktion rückgängig gemacht werden. Dabei werden die eingegebenen Werte trotzdem beibehalten.

5 Erläuterungen zur Symbolleiste

Symbolleiste: ⇔	Menü:		
Neues Dokument Dokument öffnen Speichern	Datei → Neu Datei → Öffnen Datei → Speichern		
Gelenke erstellen:			
Riementrieb Zahnradpaar Schubgelenk Gelenkglied	Getriebe → Riementrieb Getriebe → Zahnradpaar Getriebe → Schubgelenk Getriebe → Glied		
Lager (Gestell erstellen)	Getriebe → Fixieren Gelenkpunkt		
Vinkel fixieren	Getriebe → Fixieren Relativwinkel		
Celenkpunkt verschieben	Getriebe → Gelenkpunkt verschieber		
Gelenkpunktkoordinaten	Getriebe → Gelenkpunktkoordinaten		
Koordinateneingabe über Tastatur			
Antriebsbewegung definieren	Antrieb \rightarrow Winkel		
Analyse des Getriebes starten	Analyse		
🛣 Bewegung des Getriebes simulieren	Wiedergabe \rightarrow Animation		
Ergebnisse anzeigen (graphisch)	Ergebnisse → Graph		
Q S R Zoom Funktionen			

6 Tastatur und Maus

Linke Maustaste klicken: Menüpunkte, Dialogfenster, Gelenke oder Elemente auswählen

- Linke Maustaste doppelt klicken:
 - Cursor in der Nähe eines Elements → es öffnet sich ein Dialog-Fenster mit den Elementeigenschaften
 - beim Erstellen einer Gruppe graphischer Komponente → die Gruppe komplett (keine neue Komponente hinzu)

Rechte Maustaste klicken: Befehle abbrechen (Erstellen eines Elementes oder Animation abbrechen)

- Leertaste: einen Gelenkpunkt auswählen
 - → Element- oder Gelenkpunkt-Nummer eingeben
 - → numerische Auswahl eines Elements oder Punktes
 - beim Erstellen und Verschieben von Gelenkpunktdaten kann das "Gelenkpunkt-Koordinaten-Konstruktion" Dialog-Fenster geöffnet werden
- DEL-Taste: Löschen von Elementen (nur anklicken)
- ESC-Taste: Befehle abbrechen
- TAB-Taste: Durchblättern der Elementliste, wenn ein Element selektiert werden soll
- **ENTER-Taste**: bestätigt eine Elementauswahl, die mit TAB gestartet wird beschließt eine Gruppenänderung
- STRG + C: Screenshot erstellen
- **STRG + M**: Antriebsbewegung / Ändern
- STRG + P: Datei / Drucken
- F2: Wiedergabe / Animation
- F3: Elementeigenschaften
- F4: Einstellungen
- F5: Projektdokumentation
- F9: direkten Start einer Berechnung
- F10: Wiedergabe / Optionen